Conformal Symbols and the Action of Contact Vector Fields over the Superline
نویسنده
چکیده
Let K be the Lie superalgebra of contact vector fields on the supersymmetric line R. We compute the action of K on the modules of differential and pseudodifferential operators between spaces of tensor densities, in terms of their conformal symbols. As applications we deduce the geometric subsymbols, 1-cohomology, and various uniserial subquotients of these modules. We also outline the computation of the K-equivalences and symmetries of their subquotients.
منابع مشابه
Differential operators on supercircle: conformally equivariant quantization and symbol calculus
We consider the supercircle S equipped with the standard contact structure. The conformal Lie superalgebra K(1) acts on S as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra osp(1|2). We study the space of linear differential operators on weighted densities as a module over osp(1|2). We introduce the canonical isomorphism between this space and the correspondin...
متن کاملیادداشتی بر دوگانی AdS/CFT
We study duality of field theories in (d+1) dimensional flat Euclidean space and (d+1) dimensional Euclidean AdS space for both scalar the and vector fields. In the case of the scalar theory, the injective map between conformally coupled massless scalars in two spaces is reviewed. It is shown that for vector fields the injective map exists only in four dimensions. Since Euclidean AdS space is e...
متن کاملConical Conformal Antenna Design using the CPM Method for MIMO Systems
Abstract- In this article, the design of conformal antennas has been discussed using the characteristic modes (CM) method. For this purpose, the vector wave function(VWF) has been utilized to achieve a two-dimensional mapping of the conformal antenna. In designing and analyzing of cone-shaped antennas applicable for multi-input multi-output (MIMO) systems, the most important goal is to achieve ...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملActions of vector groupoids
In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion...
متن کامل